126 research outputs found

    Assessing the value of information for retail distribution of perishable goods

    Get PDF
    "This paper addresses quantitative methods. for estimating the value of information from ITS in. urban freight distribution. A real-life application on. the retail distribution of perishable goods is considered.. The problem is formulated as a vehicle routing problem. with soft time windows and time-dependent travel. times, and solved by using information affected by. different degrees of detail and reliability. The practical. performance of these solutions is then evaluated by. simulation, to assess the joint benefit of using more reliable. and detailed information with different solution. algorithms.

    Evaluating the Applicability of Advanced Techniques for Practical Real-time Train Scheduling

    Get PDF
    AbstractThis paper reports on the practical applicability of published techniques for real-time train scheduling. The final goal is the development of an advanced decision support system for supporting dispatchers’ work and for guiding them toward near-optimal real-time re-timing, re-ordering and re-routing decisions. The paper focuses on the optimization system AGLIBRARY that manages trains at the microscopic level of block sections and block signals and at a precision of seconds. The system outcome is a detailed conflict-free train schedule, being able to avoid deadlocks and to minimize train delays. Experiments on a British railway nearby London demonstrate that AGLIBRARY can quickly compute near-optimal solutions

    A bilevel rescheduling framework for optimal inter-area train coordination

    Get PDF
    Railway dispatchers reschedule trains in real-time in order to limit the propagation of disturbances and to regulate traffic in their respective dispatching areas by minimizing the deviation from the off-line timetable. However, the decisions taken in one area may influence the quality and even the feasibility of train schedules in the other areas. Regional control centers coordinate the dispatchers\u27 work for multiple areas in order to regulate traffic at the global level and to avoid situations of global infeasibility. Differently from the dispatcher problem, the coordination activity of regional control centers is still underinvestigated, even if this activity is a key factor for effective traffic management. This paper studies the problem of coordinating several dispatchers with the objective of driving their behavior towards globally optimal solutions. With our model, a coordinator may impose constraints at the border of each dispatching area. Each dispatcher must then schedule trains in its area by producing a locally feasible solution compliant with the border constraints imposed by the coordinator. The problem faced by the coordinator is therefore a bilevel programming problem in which the variables controlled by the coordinator are the border constraints. We demonstrate that the coordinator problem can be solved to optimality with a branch and bound procedure. The coordination algorithm has been tested on a large real railway network in the Netherlands with busy traffic conditions. Our experimental results show that a proven optimal solution is frequently found for various network divisions within computation times compatible with real-time operations

    2 Combinatorial Models for Multi-agent Scheduling Problems

    Get PDF
    Abstract Scheduling models deal with the best way of carrying out a set of jobs on given processing resources. Typically, the jobs belong to a single decision maker, who wants to find the most profitable way of organizing and exploiting available resources, and a single objective function is specified. If different objectives are present, there can be multiple objective functions, but still the models refer to a centralized framework, in which a single decision maker, given data on the jobs and the system, computes the best schedule for the whole system. This approach does not apply to those situations in which the allocation process involves different subjects (agents), each having his/her own set of jobs, and there is no central authority who can solve possible conflicts in resource usage over time. In this case, the role of the model must be partially redefined, since rather than computing "optimal" solutions, the model is asked to provide useful elements for the negotiation process, which eventually leads to a stable and acceptable resource allocation. Multi-agent scheduling models are dealt with by several distinct disciplines (besides optimization, we mention game theory, artificial intelligence etc), possibly indicated by different terms. We are not going to review the whole scope in detail, but rather we will concentrate on combinatorial models, and how they can be employed for the purpose on hand. We will consider two major mechanisms for generating schedules, auctions and bargaining models, corresponding to different information exchange scenarios

    Short-term rail rolling stock rostering and maintenance scheduling

    Get PDF
    This paper describes an optimization framework for railway rolling stock rostering and maintenance scheduling. A key problem in railway rostering planning requires covering a given set of services and maintenance works with limited rolling stock units. The problem is solved via a two-step approach that combines the scheduling tasks related to train services, short-term maintenance operations and empty runs. A commercial MIP solver is used for the development of a real-time decision support tool. A campaign of experiments on real world scenarios from Trenitalia (Italian train operating company) illustrates the improvement achievable by the approach when compared to the practical solution

    Susceptibility of optimal train schedules to stochastic disturbances of process times

    Get PDF
    This work focuses on the stochastic evaluation of train schedules computed by a microscopic scheduler of railway operations based on deterministic information. The research question is to assess the degree of sensitivity of various rescheduling algorithms to variations in process times (running and dwell times). In fact, the objective of railway traffic management is to reduce delay propagation and to increase disturbance robustness of train schedules at a network scale. We present a quantitative study of traffic disturbances and their effects on the schedules computed by simple and advanced rescheduling algorithms. Computational results are based on a complex and densely occupied Dutch railway area; train delays are computed based on accepted statistical distributions, and dwell and running times of trains are subject to additional stochastic variations. From the results obtained on a real case study, an advanced branch and bound algorithm, on average, outperforms a First In First Out scheduling rule both in deterministic and stochastic traffic scenarios. However, the characteristic of the stochastic processes and the way a stochastic instance is handled turn out to have a serious impact on the scheduler performance
    • …
    corecore